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The propagation of localized families of flexural plane waves in a thin elastic shell under an unsteady axial compression, which 
is non-uniform with respect to the peripheral coordinate, is considered. The shell can be non-circular and open in the peripheral 
direction. Conditions of hinged support are specified at the edges, which are optionally plane curves. It is assumed that the initial 
perturbations of the shell (non-zero initial displacements and velocities) are functions which are localized in the neighbourhood 
of a certain generatrix. The solution is constructed using the complex WKB-method developed in [1] in the form of a superposition 
of packets of flexural plane waves propagating in the peripheral direction of the shell. This paper differs from [1] in that in addition 
to taking account of axial stresses, the solution in the direction of the axis of the shell is assumed to be extremely variable. It is 
shown that it is possible to use the results obtained to investigate the free vibrations of the shell. The unsteady localized vibrations 
of a cylindrical shell with an elliptic cross-section under axial forces which increase linearly with time are considered as an example. 
© 2001 Elsevier Science Ltd. All rights reserved. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

Consider a thin cylindrical shell of thickness h. We will introduce an orthogonal system of coordinates 
x, tp in the middle surface, where x is the axial coordinate and .tp is a coordinate in the directrix, introduced 
in such a manner  that the first quadratic form is d a  2 = R2(dx 2 + d(p2), where R is the characteristic 
dimension of  the middle surface of the shell. Then, R2 = R/k((p) is the radius of curvature. The shell 
can be open in a peripheral direction and optionally has plane edges. The middle surface occupies the 
domainxa(tO) ~< x ~< X 2 (q)) when % ~< (p ~< (P2. 

We assume that the shell is loaded along the peripheral coordinate with axial stresses T~(tp, t) which 
vary slowly with time, where the compressive stress does not reach its critical value at which the shell 
loses stability [2, 3]. 

Assuming that there is considerable variability in the stress-strain state of the shell in the direction 
of the x and (p coordinates, we will use the system of equations from the theory of hollow shells which 
takes account of the existence of dynamic stresses due to axial forces [4], 

02W .02F ~2 W 
Ix2A2 W + T I(q), t ) ~ x 2  - k (q) )~x2 + ~ t  2 = 0 

k" " 32W I..t2 A2 F + (q)) ~-~-~- = 0 

(1.1) 

where 

~2 ~2 Ix4 = h 2 
A = ~-~" + - ~  2 ' 12(I - v 2 ) R  2 ' W = g 2  R~'W* F =  Ix-2F*hE 

o 2 =  R2p 
T I =-EhIx2TI ,  t = t ,  l t  c, t c EhIx 2 

Here IV,, F, are the normal deflection and stress function, t, is the time, 0 < Ix is a small parameter, h 
is the shell thickness, E, v and p are Young's modulus, Poisson's ratio and the density of the shell material 
respectively, T~ is the initial longitudinal stress and tc is the characteristic time. 

tPn'kl. Mat. Mekh. Vol. 65, No. 2, pp. 308-316, 2001. 

301 



302 I.V. Avdoshka and G. I. Mikhasev 

We shall assume that the functions Xl((p)  , X2((p) , T l ( (p ,  t), k(tp) are differentiable a sufficient number 
of  times with respect to ~0 and t and, together with their derivatives, are of the order of unity when 
Ix ---~ 0. 

At the edges of  the shell x = Xl(¢P), x = x2(tO), we consider the Navier equations [2], corresponding 
to a hinged support, 

= F O2F W - o 2 W  O, (1.2) 
- ax 2 = b - ~ r  = 0  

We consider the initial conditions 

Wl,=0= Wo(x, ~, IX)~ 0, (Vlt=o=iix-'V~(x,¢p,l.t)~ o (1.3) 

~o =@o(tP, Ix'=exp{iix-IIaocp+lbotP21}, Imb0 > 0  

where a0 is a real number and W~, V~ are complex functions such that 

3"W°* b"V° IX-" when IX---)0, m=0 ,1  ....  (1.4) 
~x " " bx" 

which have a finite number of oscillations in the direction of q~ with a variability IX -lh and satisfy boundary 
conditions (1.2). The real and imaginary parts of the functions in conditions (1.3) specify a pair of initial 
wave packets with a variability of the order of IX-1 in the direction of the x and cp coordinates, which are 
concentrated in the neighbourhood of the generatrix cp = 0. The nature of the occurrence of wave packets 
of  the type (1.3) has been studied previously in [5, 6] in an investigation of the parametric instability 
of  a cylindrical shell with variable parameters under a periodic axial force. 

The aim of this paper is to investigate the reaction of a cylindrical shell to initial perturbations of 
the type of (1.3) in the case of axial forces T1 which vary slowly with time and along the peripheral 
coordinate. 

2. M E T H O D  OF S O L U T I O N  

Taking into account the large variability of the stress-strain state in the direction of the longitudinal 
coordinate, we carry out a scale expansion by putting 

s = Ix-Zx (2.1) 

In order to solve initial-boundary-value problem (1.1)-(1.3) we will use the method developed in [1] 
for the case of a small number of waves in the direction of the shell axis. 

Consider the sequence of functions 

z~(s, tp)=sin{kn(tp)ls_sn(tp)]} ' ~ , =  rcn 
s2(tP)-su(~° ), n = i, 2 ... .  (2.2) 

Here and henceforth si(qO = g- x~tp), i = .= 
. - -  . * * 

The functions Wo, Vo where Wo (s, Wo (x, qo, IX), l~o (s, q~, Ix) = V~ (x, q~, Ix) for any 
q~ • [qol, q~2], can be expanded with respect to the system of functions {Zn} in series which are uniformly 
convergent in the interval [Sl((p) , S2((p) ] [7] 

_ s 2 (go) 

Wo = ~, WnoZn" Who = I l~'oznds 
n = l  Sl (q)) 

s2OP) 

= Z = I Voz.ds f'o V.oz., % "* 
n=l Sl(~) 

(2.3) 

Suppose that Who, Vno are polynomials of the argument IX -1/2 cp with coefficients which depend regularly 
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on Ix -1/2. Then, Wno, Vno can be represented in the form of the series 

ra] o 

ra=0 m=0 
= Iz-~tO (2.4) 

where W°hm, lflnm are polynomials of degrees Mnm with (in general) complex coefficients. 
Following the approach described previously in [1], we will seek a solution in the form of a 

superposition of wave packets propagating in the peripheral direction 

N N 

w=Xw.,  F = E F .  (2.5) 
n=l n=l 

where W~, Fn are the required functions, which are localized in a certain time interval t ~ [0, T] in the 
neighbourhood of the generatrix tO = qn(t). Here, q~(t) is the centre of the nth wave packet, which 
corresponds to the pair of  functions Wn, F~. The required function qn(t) is assumed to be doubly 
differentiable such that qn(O) = O. 

Each of the n wave packets is subject to the initial conditions 

W, I,=0 = ~ ~tm/:w*,m(;)Z,¢o, W. I,=0 =i~t-' ~. ~tm/2V~m(;)Z,t~O (2.6) 
m=0 m=0 

We will now change to a moving system of coordinates connected with the centre of the nth wave 
packet 

tO = q, (t) + I.t½~, (2.7) 

Taking account of substitutions (2.1) and (2.7), we write system of equations (1.1) for the nth wave 
packet in the form 

~4w" 2 04w. + 2 ~4w. ,92W. .'92F. 202W. 
~S 4 + ~ . 1 ~  ~1. ~ 4 + TI O~n ~$2 - lC~S 2 +11 Ot 2 

02w. .: 02w. v_ .. OW. 
-2~t~O" ~---;7--~ +taCl" ~ 2  -HZ2q"-~n = 0  (2.8) 

dtd~n i)~n 
04F" 2 04Fn + 2 04Fn O2Wn 
Os---~+ ~ t ~  lz ~ '4  Os 

Here and henceforth, a dot denotes differentiation with respect to time. 
The boundary conditions on the boundaries s = sl(to), s = s2(to) retain the form (1.2). 
We shall seek a solution of  problem (1.2), (2.6), (2.8) in the form of the expansion [1] 

W, = ~ ~t"/2w,.,(s.~,. t)¢.. F, = ~ ~t"/2f, m(s. ~,. t)~, (2.9) 
m=0 m=0 

• n = e x p  i ~t -It _~, 

Here, %(t),pn(t), bn(t) are doubly differentiable functions of the order of unity, Im bn(t) > 0 for any 
t ~ [0, T], and W~,~, fnm a r e  polynomials in ~ .  The mechanical meaning of the parameters con, p, ,  bn 
has been discussed previously [1]. 

We expand the coefficients of system (2.8) in Taylor series in powers of/.tl/2~ in the neighbourhood 
of the centre of the nth wave packet to = q~(t). On substituting formulation (2.9) into (2.8) and equating 
the coefficients of  like powers of ~t 1/2 to zero, we arrive at the sequence of equations 

~.L.jXnm_ j=O, m=O,i ,  2 ... .  (2.10) 
j=O 

where 
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L.o= l"l~ l"12, X.k ( . k , f . k )  = W T 

1.21 1n22 

( 02 2)2 02 

- - i V - " )  + T' V-(°'"-°"P")2 
02 ( 0 2 )  2 

1.,2 = -t.2, = -k  5 V '  t.22 = ~ -  p.~ 

b 
L . I  = b.~.Lp + ~.Lq + [~,%,L o - tI, p 0~, 

2 P ~ ' .  • 2 • 2 L,2 = Lpp + b ,~ ,Lm + Lqq + Lo~ + p.~,Loq + p, ,b ,~.L~ + 
2 

+/~,~2Lo I L  02 . . a . 0 . a ---U 
2 a~. 

... I :1 - iL° '  at 2 LpP - ' - 2  -L(~° - t p " L ~  + S"' S. = 0 

Here and below the subscripts p, q and co denote differentiation with respect to p,,  q,, con and the 
superscript T denotes transposition. The functions k and T1 and their derivatives are taken when 
tp = qn(t). 

Substituting series (2.9) into condition (1.2) and expanding the functions Sl(~0), s2(cP) in Taylor series 
in powers of ~tlh~ we obtain the boundary conditions for the vector functions Xnm when s = si(qn(t)) 
(i = 1, 2) 

X.o = O, 02X"-----&° 0 (2.11) 
aS2 -- 

,0X,0 02X,I . ,a3x,0 _ 
Xnl  +qn$iT=O,  7 + q n S i  OS~ -0  (21.2) 

. .aX., . 1.2(.bX,o ,a2X.o]_ x.2 ,, 

02X.2 . ,03X,i 1.2( ,,03X.0 ,04X.0 
0. 2 + q . s i ~ + T g . [ S i ~ s 3  + S i ~ s 4  ) = 0  (2.13) 

Hence, initial-boundary-value problem (1.2), (2.6), (2.8), which is two-dimensional with respect to 
the coordinates has been reduced to a sequence of one-dimensional boundary-value problems, which 
are considered in a moving generatrix ~p = q.(t). 

3. SOLUTION OF THE BOUNDARY-VALUE PROBLEMS 

We shall seek the solutions of the sequence of boundary-value problems (2.10)-(2.13) in the form 

+ (P) X.m = P~m(~., t)Y.(q.(t))Z.(S, qn(t)) X.m(s, %., t), In = O, I. 2 .... (3.1) 

where P,m is a polynomial in ~ ,  %', is an unknown column vector and X(P)nm = ,~ [W(p)nm, Jnmjr(P)'~T is a,certain 
particular solution of the inhomogeneous boundary-value problem which corresponds to the number 
m. Note that X~0) = (0, 0) r. 

Considering the zeroth approximation (m = 0), we find 

to,  = O.P,  - H , ( t .  p , .  q , )  (3.2) 
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(3.3) 

where H. is the Hamiltonian corresponding to the nth wave packet. All the functions in relations (3.3) 
are calculated for ~0 = qn(t). 

When m = 1, we have an inhomogeneous boundary-value problem in Xnl- The conditions for a 
solution of this problem to exist lead to a Hamiltonian system inp., qn [1] 

el. = Hp(t,p.,q.),  p. =-Hq( t ,p . ,q . )  (3.4) 

with the initial conditions 

qn(O) = O, p . ( O )  = a o 

In this approximation, we find 

,9(¥.z.) ~(¥.z.)]p. v(P) = i o(Y"z") OP.o F~. bn 
" ' " ' -  E 2,,.  j.0 (3.5) 

and the polynomials P.0, P.I remain unknown. 
On considering the conditions for the existence of a solution of the boundary-value problem in Xn2 

which arises in the second approximation (m = 2), we obtain the Riccati equation [1] 

(3.6) [~. + H/,pb2. + 2Hpqb. + Hqq = 0 

where bn(O ) = b0, and the amplitude equation for determining P.0 is 

h.o 0--~--2~2Pn° +h.l~. 0 . . ~ -  OP.o + h.2 _ ~  + h.3P.0 =0 

h.o(t) = npp,  h.l(t ) = 2i(bnHpp + npq) ,  h.2 = 2i 

I ' (q")  n . n p  + h.3(t ) = iH~ I b.H.Hpp - 2HpHq - ~ .  + ~.p. + l(q.) 

+l(qn)sitq.)~pn -A2" Zq znds' l(qn)=s2(q.)-Sl(qn) 

(3.7) 

Here and henceforth, a prime denotes differentiation with respect to tp. 

4. SOLUTION OF THE A M P L I T U D E  EQUATION 

The solution of amplitude equation (3.7) in the form of the polynomial 

Mno 
P.o = ~. Ank(t)~k. 

k=0 

has been presented previously [1]. Here, we consider another representation of the solution in terms 
of Hermite polynomials which, in a special case, will be convenient for describing the free vibrations 
of a prestressed shell close to a "weak" generatrix. 

We make the change of variables Yn = On(t)~, where 

exp[-~ (hnj I hn2 )dt] 
O n (t) = ~/4~ (h.0 / h.2 ) exp[-2~ (h.l / h.2 )at]dt (4.1) 

As a result, Eq. (3.7) takes the form 
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2y. h.o02, h.oO. 
~ 0  (4.2) 

Applying the method of separation of variables to (4.2) and taking account of the linearity of  
Eq. (3.7), we have 

Mno 
P.o(~.,t;c.m) = Y. c.,,Z.,.(t)H.m[O.(t)~.] (4.3) 

m = 0  

~nm(t) = {4~(hn0/hn2)exp[-2~(hnl I hn2 )dt]dt} r"/2 

exp[~ (hn3 / hn2 )dt] 

where I-l,m is a Hermite polynomial of degree m and Cnm are arbitrary constants, which are determined 
from the initial conditions. 

5. A N A L Y S I S  OF T H E  S O L U T I O N  

The above solution is the asymptotically principal approximation of the solution of the problem, apart 
• • 1 • , . . . . . .  

from quantltaes O(p./2) and is the superposltlon of Nwave packets propagating m the penpheral direction. 
At the initial instant of time, each nth wave packet decomposes into an n+th and an n-th wave packet 
which, when t = 0, hae velocities Vg = q~(t) that are equal in modulus and opposite in sign. The width 

• . 1 / 2  + . of the wave packet is a quantity of the order of ~ /Imb~(t). The signs _+ correspond to the sign in the 
first expression of (3.3). 

The unknown constants Cnm in (4.3) are determined using the formula 

( °] + I - : - v,0(q) 
c,7 m = ~ j e  q Hnra[On(O)~ WnO(q)+ d~ 

2 m + l m !  Xnm(O) COn(O) 
(5.1) 

The solution obtained here generalizes the solution obtained previously in [1], since the 
Hamiltonian (3.3) does not have a singularity whenpn = 0 and the constraintpn(t ) ~ 0; which is required 
in [1], drops out. 

A steady wave packet. The proposed method contains the possibility of finding the characteristic modes 
of vibration of a shell, concentrated in the neighbourhood of a %veak" generatrix [8], in the case of a 
steady axial stress. Suppose that a cylindrical shell of variable curvature with straight edges Sl(tO), Sz((P) = 
const is under a steady axial stress TI(~), which is non-uniform with respect to the peripheral coordinate. 

Consider the system 

Hp = O, Hq = 0 (5.2) 

and the equation 

Hppb 2 + 2Hpqb + Hqq = 0 (5.3) 

which are the degenerate steady analogues of the Hamiltonian system and the Riccati equation, 
respectively. System (5.2) has two solutions 

p=p~ O, , 2 , = 2k(9~)k (cp~)- t.T~ (~%) = 0 (5.4) 

and 

p= pw =4k~(~p~)~,. -~2 n , 2k'(q~)-Tt'(q~w)=O (5.5) 

The last two equations in (5.4) and (5.5) serve to determine the "weak" generatrix q~ = ~,~. Here, 
Eqs (5.4) have to be used when 

,2 ,, t 2 t .  >k½(~0w), 2k (cpw)+2k(~0wlk (q~w)-Tt~tp.,)TL" > 0  (5.6) 
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and Eqs (5.5) when 

~.. <k½((p~), 4k . . . .  ( (p . ) -2T~(I ) . )>0  (5.7) 

Solving equation (5.3), we find 

~,. V,'(~.)k ~((p.)+i~/ak' (~%)-2~ ( ~ )  
bw 

(5.8) 

for cases (5.6) and (5.7), respectively. Without loss of generality, we next assume that q~w = 0. Now, 
suppose thatp,(0) = pw, b,(0) = bw. Then, the solution of Hamiltonian system (3.4) and Riccati equation 
(3.6) remain constant: 

pn( t )=p. ,  q . ( t )=0 ,  bn(t)=b . ,  Vte[0,Tl .  

We will determine the polynomial/'no in accordance with relation (4.3). As a result, we obtain 

(Wn,Fn) T = Ynzn exp{i~- ' ( to . t  + pw(P +2b.(p21} × 

x (c .+~ + c2m - . m  ~- ' - -  t.=o L H.. (5.9) 

(0, = H,(O, pw,O)-~t((m+l)bwHpp +mHpq) 

In (5.9), C~m are found using formula (5.1), all the functions are calculated whenpn = Pw, q, = 0 and 
Mno is the degree of the polynomials w~0(~), Vn0(~) from the initial conditions. 

Function (5.9) is the superposition ofM,0 + 1 characteristic modes of vibration of a cylindrical shell 
which has been prestressed in the axial direction [5]. The solution is a steady wave packet with its centre 
at the "weak" generatrix cPw = 0. Analogous solutions, describing the free vibrations of a shell close to 
a "weak" generatrix, have been constructed in [8] in the case of a small number of waves along the 
generatrix. Formula (5.9) holds if 3. n ~ kl/2(0). The case of free vibrations when 3.. - kl/2(0) has been 
considered previously [6]. 

An unsteady wave packet. We will now analyse the solution in the case of a thin circular cylindrical 
shell with straight edges sl(tp), s2(tp) = const loaded with a steady axial stress Tl(tO) which is non-uniform 
along the circumference. Only some of the deductions made here will be presented below. Analysis of 
the Hamiltonian system shows that, if 

k24Xn > (a02 + ~ 2 n ) 4  ' T(((p)<0 when O<(p<(p2 ' T~((p) = T~(-(p) (5.10) 

inf Tl((p)< A, A = 2k-[H.(O,  ao,O)]2~.-. 2 (5.11) 
[o,~2 ] 

then a t, exists such that vg(O)vg(t) > 0 when 0 < t < tr, vg(tr) = 0, where Tl[q,(tr)] = A; v°(O)vg(t) < 0 
when tr < t < 3tr, Vg(3tr) = 0 and Tl[q,(3tr)] = A; qn(3tr) = --qn(tr); Vg(O)Vg(t) > 0 when ~t r < t < 4tr 
and Vg(4tr) = vg(O). Here, p,,  q,, to, are periodic functions of time with period 4t,. 

The periodicity of the coefficients of the Riccati equation (3.6) follows from this and the question 
arises as to the nature of the solutions of both the Riccati equation and of the amplitude equation (3/7), 
when conditions (5.10) and (5.11) are satisfied. 
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6. EXAMPLES 

1. Consider a flexibly supported circular cylindrical shell with straight edges subjected to a steady, non- 
uniform axial load. Suppose that 

Tl=l+cos2q~,  s l=0 ,  s2=4, k=2,  a 0=2/3, b 0 = i  

14'g = W~,oZ,, (/; =v~0z" 

In this case, the initial wave packet is located at the "weakest" generatrix, where the compression T1 
is a maximum Calculations were carried out for 

o h=0,02, R=50, v=0,3,  w~0=l, v ,0=l ,  n = l  (6.1) 

Conditions (5.10) and (5.11) are satisfied for these parameter values. 
The graphs of the functions p~ (t), q~ (t), ~o] (t) (curves 1-3 respectively) in Fig. 1 show that the 

behaviour of the 1 +-st wave packet agrees completely with the results of the analysis: multiple reflection 
of the wave packet is observed and the functions p], q]-, co] are periodic. Graphs of the functions 
Im b]  (t), Re w a+0max (curves 4 and 5) show that each reflection is accompanied by focussing of the wave 
packet (by in increase in Im b]-) and an increase in the amplitude of the vibrations. An approximated 
calculation of the monodromy matrix [9] for a linear sy+stem of equations, which is equivalent to (3.6), 
enabled us to establish that, in this case, the function b?(t) is not periodic and the interval between two 
even-numbered maxima of the function Im b]- (t) only slightly exceeds the period 4tr of the functions 

+ + 

pl,  ql, o~. 
2. Consider a flexibly supported cylindrical shell with straight edges which has an ellipse with semi- 

axes el, e 2 (e  I < e2) as the directrix. Suppose the initial wavepacket is located in the generatrix 
corresponding to the smallest curvature (the "weakest" generatrix). Note that there will be two such 
generatrices here. Suppose the shell is loaded with an axial stress T1 = t which slowly varies linearly 
with time. Calculations were carried out in the interval t e [0, Tcr) where Tcr is the critical value of the 
axial stress [2], which corresponds to loss of stability of the shell. As the initial wave packet, we consider 
one of the characteristic modes of the low-frequency vibrations of a shell which is stress free (T1 = 0). 
We put 

e l = l ,  e2=1,5, s j=0 ,  s2=5 

a0 = aJk~(0)~. -  ~.2 bo =i~'. 
4 4k~(0)~,n _ ~2 

= WnOZn, V 0 ~-UnoZ n 

The values of the remaining parameters are the same as in (6.1). 
The same notation is used in Fig. 2 as in Fig. 1. We see that the functionsp]-, q], Im b ]  are constant, 

that is, an increasing axial stress T1 has no effect on the vibration modes but leads to a reduction in the 
frequency of the vibrations I o TI and to an unlimited increase in their amplitudes. This indicates the 
possibility of a dynamic loss of stability at values of Tl(t) less than the critical value Tc~ and the need 
for a further investigation in a non-linear formulation. 

2 
3 

-2 
0 I 2 3 t 

Fig. 1 
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J . = _ . _ _ - - . . - - -  

/! 

\2 
J 

/ 
4 

J 

- I  
0 0.3 0.6 t 

Fig. 2 
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